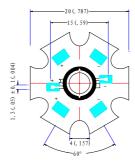

HIGH POWER

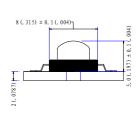
FYLP-3W-UBB

Features:

- Long operating life.
- Highest flux per LED family in the world.
- Available in Blue.
- Lambertian radiation pattern.
- More energy efficient than incandescent and most halogen lamps.
- Low voltage DC operated
- Cool beam,safe to the touch
- Instant light (less than 100ns)
- Fully dimmable
- No UV
- Superior ESD protection
- Lower Rth
- ROHS compliant-Lead-free

Radiation Pattern




Relative Lumionous Intensity(LOP @max=1)

Package Dimensions

Applications

- Reading lights (car, bus, aircraft)
- LCD Backlights / light Guides.
- Fiber optic alternative/Decorative/Entertainment
- Mini-accent/Up lighters/Down lighters/ Orientation
- Indoor/Outdoor commercial and Residential Architectural
- Cove/Under shelf /Task
- Bollards/Security/Garden
- Portable(flashlight,bicycle)
- Edge-lit signs (Exit, point of sale)
- Automotive Exit (stop -tail-Turn ,CHMSL,Mirror Side Repeat)
- Traffic signaling / Beacons/ rail Crossing and Wayside

HIGH POWER

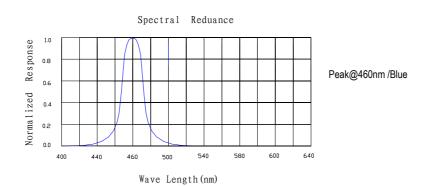
■ Typical Optical/Electrical Characteristics@TJ=25°C

ltem	symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	VF	IF=800mA	3.4	3.6	4.0	V
Reverse Current	IR	VR=5V			50	uA
50% Power Angle	2θ _{1/2}	IF=800mA	110	120	130	deg
Luminous Intensity	Ф۷	IF=800mA	15	22	-	LM
Recommend Forward Current	IF			800		mA
Wave length	λd	IF=800mA	460		470	nm
Thermal Resistance, Junction to Case	Rjp	IF=800mA		10		°C/W

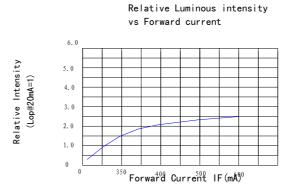
Notes: 1. Tolerance of measurement of forward voltage $\pm~0.~1v$

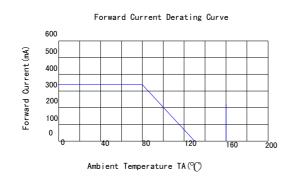
- 2. Tolerance of measurement of peak Wavelength $\pm 2.0 \text{nm}$
- 3. Tolerance of measurement of luminous intensity $\pm 15\%$.

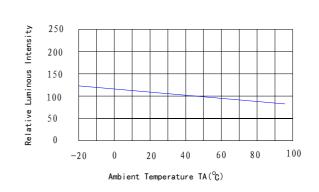
Absolute Maximum Rating


ltem	symbol	Absolute Maximum Rating	Unit		
Forward Current	IF	800	mA		
Peak Forward Current*	IFD	1200	mA		
Reverse Voltage	VR	5	V		
Power Dissipation	PD	3000	mW		
Electrostatic discharge	ESD	± 4500	V		
Operation Temperature	Topr	-30°C to +80°C	-30°C to +80°C		
Storage Temperature	Tstg	-40°C to +100°C			
Lead Soldering Temperature*	TsoL	260 °C for 3 Seconds Max			

- IFP Conditions :Pulse Width ≤ 10 msec duty $\leq 1/10$
- All high Power emitter LED products mounted on aluminum metal-core printed circuit board, can be lighted directly, but we do not recommend lighting the high power products for more than 5 seconds without a directly, but we do not recommend lighting the high power products for more than 5 seconds without a appropriate heat dissipation equipment.
- Re-flow, wave peak and soak-stannum soldering etc. is not suitable for this products.
- Suggest to solder it by professional high power LED soldering machine.
- Can use invariable temperature searing-iron with soldering condition: ≤ 260 degreen less than 3 seconds.




HIGH POWER


■ Typical optical/Electrical Characteristics Curves (Tj=25°C Unless Otherwise Noted)

Luminous Intensity Vs. Ambient Temperature